Vista aérea de um labirinto de jardim circular e de um pavilhão verde

Cinco prioridades para aproveitar o poder da Inteligência Generativa (GenAI) no setor bancário

Para bancos com a estratégia, talentos e a tecnologia corretos, a GenAI pode transformar as operações e ajudar a reimaginar futuros modelos de negócios.  


Em resumo

  • De acordo com pesquisa recente realizada pela EY-Parthenon, os bancos reconhecem o valor transformador da GenAI, mas têm priorizado a automatização de back-office para as implantações iniciais.
  • Uma visão clara a longo prazo e os casos de utilização corretos podem ajudar os bancos a ultrapassar barreiras a curto prazo, tais como conhecimentos insuficientes, custos elevados e tecnologia legada.
  • São necessários modelos e controles de governança bem estruturados para abordar uma ampla gama de riscos, inclusive privacidade dos dados, resultados tendenciosos e incerteza regulamentar.

Finanças integradas e descentralizadas, a tokenização, os pagamentos em tempo real e a AI generativa (GenAI) figuram entre as forças poderosas que moldam o panorama bancário dos dias de hoje. Cada uma dessas forças oferece oportunidades únicas para os bancos reinventarem os seus modelos de negócio, e a GenAI chegou à vanguarda como um meio para os bancos acelerarem a inovação.

Pesquisa recente da EY-Parthenon revela como os responsáveis pela tomada de decisões dos bancos comerciais e de varejo em todo o mundo veem as oportunidades e os desafios da GenAI, bem como destacam as prioridades iniciais.

De modo mais específico, os entrevistados citaram três áreas principais em que a GenAI está mudando a forma de trabalhar em seus bancos:

    1. Mediante maior produtividade viabilizada pela automatização de atividades relacionadas a vendas (66%)
    2. Melhoria das capacidades tecnológicas existentes (63%)
    3. Aceleração de uma inovação mais ampla (54%)

    Baixe os insights completos da pesquisa EY-Parthenon: AI generativa em bancos comerciais e de varejo

    Embora não cause surpresa que a produtividade e a automação estejam no topo desta lista, os líderes bancários veem claramente como o valor da GenAI vai além das melhorias de processos e da redução de custos e pode ajudá-los a reforçar as suas capacidades e a promover mais inovação, com maior rapidez.

     “Os bancos devem resistir ao pensamento legado ao identificar oportunidades com a GenAI. Os riscos existenciais colocados pelos causadores de rupturas e pelas novas forças de mercado exigem que os bancos vão além da automação para reimaginar os modelos de negócio bancário”, afirma Aaron Byrne, líder de serviços financeiros da EY-Parthenon.

    Ao definir as suas estratégias e planos GenAI, a liderança dos bancos deve reconhecer a posição da GenAI lado a lado com a Web3, blockchain, computação quântica e outras tecnologias disruptivas. Os roteiros de longo prazo devem refletir a forma como estas tecnologias, quando implementadas nas combinações certas, podem transformar as principais funções empresariais (por exemplo, operações, finanças, gestão de riscos, desenvolvimento de produtos e vendas). Mais importante ainda, podem também abrir novos fluxos de receitas e criar propostas de valor inteiramente novas.

    Os bancos devem reimaginar o que é possível:

    • As interações entre clientes novos e já bancarizados (por exemplo, integração, configuração de conta, atividades de serviço) podem ser simplificadas e ficar mais inteligentes.
    • As comunicações e ofertas de marketing podem ser hiper-personalizadas.
    • Os bancos comerciais poderiam aumentar muito a velocidade de fechamento.
    • Os mercados de capitais podem avançar a passos largos na execução de negociações, processamento, serviços de títulos e modelação de risco.
    • Os banqueiros de investimento, analistas e consultores podem estar munidos de ferramentas que lhes permitem personalizar estratégias de investimento, avaliar os riscos das transações e descobrir novas oportunidades.

    Fazer desses recursos avançados uma realidade requer uma visão clara, a capacidade de efetivar mudanças, novos recursos tecnológicos e novas competências e talentos.

    Os bancos devem resistir ao pensamento legado ao identificar oportunidades com a GenAI. Os riscos existenciais colocados pelos responsáveis pela disrupção e pelas novas forças de mercado exigem que os bancos vão além da automação para reimaginar os modelos de negócio bancário.
    1

    Chapter 1

    Constraints and barriers to GenAI adoption in banking

    The survey reveals five roadblocks impeding success from investment in GenAI.

    Os bancos enfrentam desafios significativos que podem limitar a sua capacidade de gerar grandes retornos do seu investimento na GenAI. Os resultados da pesquisa identificaram alguns desafios principais:

    Experiência e recursos insuficientes

    Os bancos veem lacunas nos recursos para a contratação de pessoal nas iniciativas GenAI. Mais de metade dos entrevistados disseram que a experiência interna insuficiente representava um grande desafio no estabelecimento de uma equipe GenAI dedicada. 

    Lack of knowledge
    of banking decision-makers say insufficient internal expertise is a challenge in establishing a dedicated GenAI team
    Restrições de custo e orçamento

    As realidades econômicas vem limitando os investimentos dos bancos em todas as tecnologias e a GenAI não é exceção. Mais de metade dos entrevistados citaram os custos de implementação como um desafio ao explorar as iniciativas GenAI. 

    Implementation costs
    of banking decision-makers say high costs are a barrier to GenAI implementations
    Falta de confiança nas capacidades internas

    As arquiteturas tecnológicas antigas e altamente personalizadas que existem hoje em muitos bancos, com todas as suas soluções alternativas e fluxos de dados deficientes, representam uma barreira à implementação da AI. Reconhecendo essas limitações, uma parcela significativa dos entrevistados afirmou não acreditar que a sua instituição tivesse a infraestrutura tecnológica e as capacidades corretas para implementar a GenAI.

    Concerns about internal capabilities
    of bankers lack confidence in their internal capabilities (tech infrastructure, controls and talent) to implement GenAI use cases

    Priorização de casos de uso

    As opções concorrentes para a implantação de AI desafiam os bancos a identificar os casos de utilização iniciais que geram mais impacto. Muitos bancos estão priorizando recursos de automação legados (por exemplo, automação de processos robóticos) em áreas de back-office. Uma clara maioria dos entrevistados afirma que os seus bancos estão à espera de mais desenvolvimento e testes antes de priorizarem casos de utilização de atendimento direto ao cliente (front-office).  

    Prioritizing use cases
    of banks are waiting for further developments and testing before prioritizing front-office use cases

    Incerteza e risco regulatório

    A evolução das regulamentações cria incerteza sobre os requisitos de conformidade e os riscos de responsabilidade que os bancos podem enfrentar. Do ponto de vista da resiliência, os bancos precisam estar preparados para evitar que hackers, fraudadores e outros malfeitores se aproveitem indevidamente do poder da GenAI. Dado que a regulamentação está se atualizando, as empresas terão de pensar na forma como constroem e viabilizam sistemas que se antecipam aos avanços na regulamentação, em vez de criarem processos que possam ser ultrapassados por restrições. Da mesma forma, os bancos que pretendam implementar esses avanços devem ter em mente as alegações dos reguladores de que as regras existentes serão aplicadas à GenAI.

    Os riscos relacionados com a privacidade, segurança, precisão e confiabilidade dos dados são as principais preocupações dos bancos nas implementações da GenAI. Isso é compreensível, visto que os grandes modelos de linguagem (LLMs) podem estar sujeitos a anormalidades e preconceitos. A prevalência de dados sensíveis e confidenciais no setor bancário levanta preocupações sobre violações acidentais de dados e transações erradas. 

    2

    Chapter 2

    Five priorities for banks to advance their GenAI journey

    Banks should focus on these key strategic priorities to help accelerate innovation and reimagine banking models.


    1. Visualize mudanças nos negócios utilizando uma abordagem voltada para o futuro

    Para aproveitar a oportunidade da GenAI, os bancos devem reimaginar os seus futuros modelos de negócio com base nas novas capacidades que a GenAI permite e depois trabalhar retroativamente para priorizar casos de utilização a curto prazo. Novos recursos habilitados para AI em toda a empresa podem criar novas oportunidades para monetizar dados, expandir ofertas de produtos e serviços e fortalecer o envolvimento do cliente. Todas essas etapas tornarão a organização mais competitiva.

    Em que pontos agir agora

    Aplicando os aprendizados de implementações anteriores de tecnologia inovadora (por exemplo, blockchain e automação de processos robóticos), os bancos devem avaliar se a GenAI, a tecnologia existente ou uma combinação das duas seria a solução certa para abordar questões e oportunidades específicas. Casos de uso bem fundamentados incluirão atividades de “alto contato” historicamente pertencentes a pessoas, que aproveitam grandes conjuntos de dados ou exigem uma lógica de resposta generativa. Considerações regulatórias também podem contribuir para definir a priorização de casos de uso. As autoridades provavelmente têm a expectativa de que as empresas implementem sistemas avançados de GenAI em áreas como o crime financeiro.

    Olhando para o futuro

    Com o tempo, os bancos devem desenvolver uma visão abrangente para o negócio, incorporando todo o portfólio de inovação e ficando prontos para dinamizar, com agilidade, à medida que a tecnologia de AI continua a evoluir rapidamente.

    Navegue em sua jornada de IA

    Crie confiança, gere valor e proporcione impacto humano positivo com EY.ai – uma plataforma unificadora para transformação de negócios habilitada por AI.

    2. Explorar uma abordagem ecossistêmica para acessar novas tecnologias e talentos

    Os vários bancos que precisam atualizar a sua tecnologia poderiam aproveitar a oportunidade para superar as atuais restrições de arquitetura tecnológica, adotando a GenAI. No entanto, para que a GenAI tenha utilidade no local de trabalho, necessita de acesso à experiência operacional e aos conhecimentos do ramo de atividade do colaborador.

    Dada a novidade da GenAI e as capacidades tecnológicas limitadas de muitos bancos, podem ser necessárias aquisições ou parcerias para se obter acesso às competências e recursos necessários. A capacidade da GenAI de trabalhar com dados não estruturados facilita a conexão e o compartilhamento de dados com terceiros por meio de ecossistemas. Metade (51%) dos bancos afirmaram preferir parcerias como abordagem de entrada no mercado para casos de utilização da GenAI, em vez do desenvolvimento interno.

    Em que pontos agir agora

    Identificar oportunidades para modernizar a infraestrutura, melhorar a qualidade dos dados e aprimorar os fluxos de dados constituem o primeiro passo crítico. Os bancos talvez precisem melhorar as capacidades informáticas (por exemplo, capacidade do servidor, armazenamento de dados e poder computacional) para implementar a AI nos ambientes tecnológicos e de dados existentes nos bancos. Além disso, a construção de “gráficos de conhecimento” a partir da experiência institucional existente permitirá à GenAI extrair informações valiosas.

    Olhando para frente

    As oportunidades de aquisições e joint ventures podem ajudar os bancos a construir ecossistemas novos ou a melhorar os ecossistemas existentes com foco na GenAI e a fornecer novos produtos e soluções mais rapidamente. O argumento comercial para tais acordos deve basear-se em uma avaliação cuidadosa das capacidades e nos resultados dos casos de utilização iniciais. 

    3. Reequilibrar o portfólio de inovação, ao mesmo tempo identificando casos de uso

    Quando se trata especificamente da GenAI, os bancos não devem limitar a sua visão à automação, melhoria de processos e controle de custos, embora estes façam sentido como prioridades para implementações iniciais. A GenAI pode causar impacto nas operações voltadas para o cliente e as receitas de uma forma que as implementações atuais de AI muitas vezes não fazem. Por exemplo, a GenAI tem o potencial de apoiar a hiper-personalização de ofertas, o que ajuda a promover a satisfação e retenção do cliente e níveis mais elevados de confiança.

    Da mesma forma, muitos bancos têm buscado estratégias de verticalização da indústria e de retenção de depósitos, bem como procurado fluxos de receitas novos e diversificados. Estes são tópicos lógicos para uma discussão dos casos de uso iniciais da GenAI.





    Os bancos podem utilizar a GenAI para gerar novos insights a partir dos dados que recolhem sobre hábitos de compra, padrões comerciais e compliance fiscal interna e para criar fluxos de receitas adicionais.

    Embora esses casos de uso de front-office possam gerar ganhos de alto perfil, também podem suscitar novos riscos. Os controles apropriados devem informar o planejamento inicial e ajudar a minimizar o risco de danos à qualidade do serviço, à satisfação do cliente e à marca e reputação do banco. Os bancos devem ainda reconhecer que os reguladores prestarão especial atenção aos casos de utilização voltados para os clientes e àqueles em que a AI permite decisões automatizadas.

    Em que pontos agir agora

    Os bancos devem analisar os casos de uso sob a ótica da criação de valor e do risco. No curto prazo, os bancos devem se concentrar em promover as oportunidades potenciais de maior valor, levando em consideração o nível de exposição ao risco. O portfólio de investimentos em IA deve acelerar os objetivos estratégicos mais amplos dos bancos e, ao mesmo tempo, capitalizar os ganhos rápidos de curto prazo que oferecem claro valor com risco mínimo. Os casos de uso orientados internamente para gerar conteúdo e automatizar fluxos de trabalho (por exemplo, gestão de conhecimento) geralmente são bons pontos de partida.

    Começar aos poucos e obter ganhos rápidos permitirá que os bancos avaliem as suas capacidades, reconheçam os principais desafios e considerações e avaliem as parcerias ou aquisições atuais e potenciais para uma maior escala.

    Olhando para o futuro

    Aprender com as vitórias rápidas iniciais proporcionará o impulso para avançar para casos de uso de maior valor e risco quando a organização estiver preparada para isso. Isso também preparará o terreno para o uso da Inteligência Artificial Generativa (GenAI) para transformar e reinventar modelos de negócios.

    4. Estabelecer um centro de excelência dedicado ou uma abordagem de torre de controle

    Instituições financeiras de todos os portes podem se beneficiar com a criação de um centro de excelência (CoE) GenAI para implementar casos de uso iniciais, compartilhar conhecimento e melhores práticas e desenvolver habilidades. No entanto, à medida que as suas capacidades GenAI amadurecem, as organizações podem ir além da coordenação de talentos e projetos para adotar uma abordagem de “torre de controle” para desenvolver visão e estratégia, fornecer visibilidade sobre a adoção da GenAI em toda a organização e fortalecer os modelos de governança.

    Em que pontos agir agora

    Os bancos de maior porte, mais avançados na sua experimentação de AI, devem estabelecer uma função de torre de controle para não só fornecer orientação e visão, mas também documentar um roteiro de alto nível para alcançar os objetivos de GenAI da empresa. Um roteiro assim exige uma reformulação da cadeia de valor e do modelo de negócio, uma avaliação completa das arquiteturas tecnológicas e dos conjuntos de dados e uma avaliação dos investimentos em inovação. Uma abordagem de torre de controle fornece liderança com relação à GenAI e coordena a execução e implantações contínuas. É fundamental que sejam implementados os controles e métricas corretos, efetuando-se ajustes ao longo do tempo, à medida que os resultados do negócio são acompanhados e as necessidades passam por mudanças.

    Para organizações de pequeno e médio porte em estágios iniciais de adoção da GenAI, um CoE será suficiente como primeiro passo e ponto de coordenação para o conhecimento. Além disso, um CoE permitirá à organização melhorar gradativamente as capacidades, difundir as melhores práticas, promover compartilhamento de conhecimento e promover casos de utilização iniciais.

    Olhando para o futuro

    À medida que os bancos monitorizam os casos de utilização e parcerias iniciais, devem avaliar continuamente os casos de utilização para expansão ou eliminação, bem como avaliar quais as parcerias a serem consolidadas. Os bancos também terão de decidir como a torre de controle irá interagir com as diferentes linhas de negócio e como a titularidade dos casos de utilização, do orçamento, do sucesso e da governança deverá ser repartida ou centralizada.

    5. Instituir governança e controles

    A GenAI introduz novos riscos e aumenta os já existentes nas operações bancárias. Embora os processos e controles de governança de IA sejam um pouco semelhantes aos das tecnologias legadas, novos riscos exigem novos modelos e estruturas, tanto para casos de uso interno quanto para o uso de ferramentas de terceiros.

    As organizações devem considerar quando e como os colaboradores podem potencializar a GenAI e avaliar os riscos distintos de casos de uso internos e externos. O impacto da GenAI nas operações é outro fator. Por exemplo, a aplicação da GenAI às decisões de concessão de empréstimos poderia levar a resultados tendenciosos com base em características protegidas (por exemplo, gênero ou raça). O ônus da prova cabe aos bancos, o que significa que terão de recolher provas para mostrar aos reguladores por que motivo(s) os pedidos são negados e que os requerentes são considerados de forma justa. Mesmo em casos em que atualmente não existem limites legais ou regulamentares, os modelos de governança devem ser concebidos para promover a utilização responsável e ética da GenAI.

    Em que pontos agir agora

    Como primeiro passo, os bancos devem estabelecer diretrizes e controles sobre a utilização, pelos colaboradores, de ferramentas e modelos GenAI existentes e disponíveis publicamente. Essas diretrizes podem ser projetadas para monitorar e impedir que os colaboradores carreguem informações proprietárias da empresa nesses modelos. Além disso, devem ser estabelecidas estruturas de governança e controle de ponta para o desenvolvimento, uso, monitoramento e gerenciamento de riscos da GenAI, independentemente de casos de uso individuais.

    Olhando para o futuro

    À medida que os bancos fazem mais investimentos em capacidades GenAI e desenvolvem novos casos de utilização, terão de avaliar os desafios e riscos únicos associados às ferramentas e ajustar a governança e os controles para cada caso de utilização individual. Novos casos de uso trarão novos requisitos contínuos para testes e avaliações de anormalidades, preconceitos e outros riscos.

    Para encerrar

    Aproveitar o poder transformador da GenAI requer uma combinação de novas ideias sobre um desafio de longa data para os bancos - como inovar e, ao mesmo tempo, manter as luzes acesas. Mas os bancos entendem claramente a urgência; uma grande maioria já está dedicando recursos à GenAI.

    Allocating resources
    of respondents noted that their banks have dedicated resources to GenAI exploration or deployment

    O sucesso na GenAI requer um planejamento futuro para definir a visão e uma abordagem programática para a priorização de casos de utilização, gestão de riscos e governança. Os bancos terão de desafiar a sua compreensão atual da AI, principalmente como uma tecnologia para automação de back-office e redução de custos. Pensar em como a GenAI pode transformar as funções de front-office e o modelo de negócios geral é essencial para maximizar o retorno do investimento em tecnologia. Os bancos também devem reconhecer a GenAI como apenas uma das peças integrantes de uma agenda global de inovação. A utilização da GenAI juntamente com um conjunto equilibrado de ações mensuradas, apoiadas por uma estratégia de longo prazo, permitirá aos bancos criar valor para clientes e acionistas, ao mesmo tempo que constroem o banco do futuro.

    Sumário

    Para aproveitar o verdadeiro poder da GenAI, os bancos precisarão avaliar o valor e o risco do caso de uso para poder contribuir adequadamente com um roteiro de longo prazo. Mediante análise das lições aprendidas com projetos de inovação tecnológica, capacidades de gestão de dados e talentos, os bancos podem ajudar a desenvolver uma estrutura para o desenvolvimento de casos de uso. O estabelecimento de governança e controles corporativos para uso interno e externo da GenAI e uma abordagem de "torre de controle" serão essenciais para avaliar a criação de valor do caso de uso e, ao mesmo tempo, gerenciar os níveis de risco associados.

    Prashant Kher, Diretor Sênior de Estratégia de Ativos Digitais, EY-Parthenon, Ernst & Young LLP e Zachary Trull, Estratégia de Serviços Financeiros EY-Parthenon, Ernst & Young LLP foram os autores colaboradores deste artigo.  

    Sobre este artigo

    Autores

    Responsáveis pelas contribuições para esta publicação

    Artigos relacionados

    Três maneiras de liberar o poder das pessoas na transformação bancária

    Os bancos precisam adotar uma cultura de falha rápida, envolver ativamente os funcionários e diversificar as experiências e habilidades dos funcionários. Saiba mais.