
Performance
engineering:
much more than
performance testing

2Performance engineering: much more than performance testing ﻿ |

Content
3	 Performance = speed and scale

3	 The four dimensions of
performance engineering

5	 Conclusion: implement
performance engineering early
and often

We’ve all heard about dramatic website or program
performance failures, from crashing government portals,
to Black Friday e-commerce disasters, to unplayable game
updates. The biggest performance failures may even have
destructive effects on lives and livelihoods. They often end
up splashed all over the news, are met with complaints from
users and chagrin from owners — and organizations often
take a big reputation hit to go along with it. But even smaller
performance failures, such as long wait times, impact user
experience and can lead to customers leaving in droves for
greener (and faster) pastures.

When we know the long-lasting effects performance failures
can have, why do they still happen, and how can we avoid
them? The answer is to consider the risks a project faces
from failures, then implement a performance engineering
process that is proportional to those risks, beginning with the
planning process.

3Performance engineering: much more than performance testing ﻿ |

Most of us think of performance as how fast
something happens – for instance, how fast a
website loads or how fast we get search results.
But another key aspect of performance is scale:
how well the program works when you increase
the load. What happens when you go from a single
user to a hundred users? Thousands of users? How
about millions? Often, companies delay evaluating
scalability until the last minute; but when problems
inevitably arise, there is little or no time left to fix
them before launch. It’s important to remember that
scalability and speed are equally important aspects
of performance and are much easier to manage when
testing starts early.

Implementing the four dimensions of performance
engineering early and thoroughly will result in a
better quality product, a better user experience and
reduced or eliminated delays in going live.

Performance =
speed and scale

The four dimensions of
performance engineering

The terms “performance engineering”
and “performance testing” are often used
interchangeably, but performance testing is just one
part of the discipline of performance engineering.

Performance engineering is a broad, holistic view
of performance across the entire lifecycle of an
application or program and consists of four parts:

1.	Architecture and modeling

2.	Performance diagnostics and profiling

3.	Performance testing

4.	Monitoring and capacity

Architecture and modeling
Architecture and modeling should begin before
development. This stage includes nonfunctional
requirement gathering and scenario development
to answer fundamental questions about the
project: How many users do we expect? How many
transactions and how much traffic do we expect?
What performance bottlenecks are there from other
integrated systems?

Starting here enables the performance architect
to understand the overall design and architecture
of the project from the very beginning, so they can
spot and surface issues right away, before they get
to development. This also gives the developer a
clear picture of how the program needs to perform,
so they can make the right design choices at the
beginning, saving them from going back and re-

architecting later in the process. For example, if a
developer knows that a million records a minute need
to be processed, rather than a thousand records a
minute, they will make different design choices.

This phase doesn’t need to capture everything
perfectly, but developing a good fundamental
understanding of the project will make a big
difference later.

Performance diagnostics and profiling
Performance diagnostics and profiling are intended
to identify performance weak points as early as
possible in the development process and occur
throughout development, including within agile
sprints. Diagnostic tools allow you to dive deeply
into performance at the code and function levels.
For instance, they may record how long it takes
for results to be returned every time someone
clicks on a search button. Then, the tools can
not only indicate when there is a problem but
also pinpoint where the problem lies. Over time,
diagnostic tools will help develop a baseline, which
allows for anomaly detection. For instance, if your
baseline for a search is normally 30 seconds,
if it suddenly takes 60 seconds, that could
indicate an issue that needs to be addressed.

When embedded into the development process,
performance diagnostics are also the first
opportunity to understand and diagnose performance
issues for a single user, before you begin the
performance testing stage for multiple users.

4Performance engineering: much more than performance testing ﻿ |

release
Performance testing
Performance testing
looks at what happens
when the program
scales to multiple users.
Sometimes referred
to as load testing, it
uses automated scripts
to simulate users in
increasing numbers
and flag any issues.
It also validates the
capacity of the systems
and scalability of the
applications. At this
point, if performance
diagnostics have been
completed thoroughly,
many issues should
have already been
resolved, so problems
will be solely because
of load or capacity. This
allows developers to
more easily and quickly
pinpoint and fix the
source of the problem.

in
sprint

Level 1
Unit performance profiling

•	 Does the transaction meet performance
expectations at the single user level?

•	 Does the call flow execute as designed?

•	 Can the feature/function be tuned now?

Feature/function
Examples:
•	 Online banking login and account overview
•	 Returning results from a search
•	 Save and submit actions
•	 API methods

•	 	Analysis of individual
processes at a light load

•	 	Identify performance issues earlier in
development lifecycles

•	 	Leverage lower-level environments

•	 	Extended time to diagnose and
remediate performance issues

•	 Load testing of individual applications
(e.g., “four-wall” testing)

•	 Batch test under anticipated volumes

•	 Evaluate performance under anticipated
and higher-than-anticipated loads

•	 Validate performance in end-to-end
integrated transaction flows

•	 Validate key elements of batch schedule

•	 Scope to include baseline load from
level 2, with integrations and limited
profiling added

out
of sprint

Level 2
Process performance testing

•	 Do processes within an application
perform well under an individual load?

•	 What is the performance limit of the
application?

•	 Is the application stable over time?

Processes
Examples:
•	 Make 500 trades
•	 Create 50 policies
•	 Generate a report with 10,000 records

Level 3
Integrated performance testing

•	 Does the whole system perform well
under production-like workloads?

•	 At what points does performance
degrade, and what are the bottlenecks?

•	 Does infrastructure scale?

End-to-end testing
Examples:
•	 Simulate a peak hour for consumer banking and

include all transactions
•	 Apply for a mortgage loan, process the paperwork and

close the transaction

Types of performance testing

5Performance engineering: much more than performance testing ﻿ |

Monitoring and capacity
Once launched, monitoring and capacity are implemented to watch
for issues in the real world. Tracking user and system trends helps to
proactively manage performance and capacity over the long term and
make plans around potential issues. The goal is to predict a bad user
experience before it happens and shorten the time to solve the problem.

Monitoring and capacity can also offer feedback into previous processes. For
example, initial testing may have been completed with 10,000 users, but during
monitoring, you see that there are now 20,000 users. You can now revise testing
based on what’s actually happening. There may also be different ways that people
are interacting than were expected. Those can now be included in testing as well.

In a cloud or virtual environment, monitoring and capacity planning can enable
notifications, automated scaling and adding capacity in production in real time
(e.g., adding more servers or using backup sites to load balance).

Traditionally, performance testing is last on the long list of things to do before
launch, and performance engineering as a whole doesn’t make the list at all. In a
typical development cycle of in sprint/out of sprint/release, performance testing
often begins only a month or so before the planned go-live date. Inevitably, issues
appear, including some in fundamental design and architecture that are difficult to
fix late in the game. The go-live may be postponed or, in the worst-case scenario,
goes forward and there is a dramatic crash, complete with negative news coverage.
So, while you may be tempted to skip performance engineering due to time and
budget constraints, when something goes wrong at the end, you’ll actually spend
more time and money fixing it than it would have cost had you implemented it
early.

If the four dimensions of performance engineering are started early and done well,
you’ll have a better quality product, as well as a better user experience, and will
go live faster and most likely without any delays.

How to get started with performance engineering
1.		Start now and mature over time. You don’t have to implement everything

discussed here on day one. Start with low-hanging fruit, such as the timing of
key transactions during manual testing, adding performance requirements to
acceptance criteria or starting load testing earlier with fewer transactions and/
or less volume.

2.	Develop an approach based on your unique risks. The considerations of a big
retailer will be very different than a local government.

3.	Evaluate tools to make performance engineering easier: application
performance monitoring (APM) tools, automated load testing tools, log
aggregators, cloud-native toolkits and similar tools.

Conclusion: implement
performance engineering
early and often

EY | Building a better working world

EY exists to build a better working world, helping to create
long-term value for clients, people and society and build
trust in the capital markets.

Enabled by data and technology, diverse EY teams in over
150 countries provide trust through assurance and help
clients grow, transform and operate.

Working across assurance, consulting, law, strategy, tax and
transactions, EY teams ask better questions to find new
answers for the complex issues facing our world today.

EY refers to the global organization, and may refer to one or more, of the member
firms of Ernst & Young Global Limited, each of which is a separate legal entity.
Ernst & Young Global Limited, a UK company limited by guarantee, does not
provide services to clients. Information about how EY collects and uses personal
data and a description of the rights individuals have under data protection
legislation are available via ey.com/privacy. EY member firms do not practice law
where prohibited by local laws. For more information about our organization,
please visit ey.com.

Ernst & Young LLP is a client-serving member firm of Ernst & Young Global Limited
operating in the US.

© 2021 Ernst & Young LLP.
All Rights Reserved.

US SCORE no. 13636-211US_2
2104-3758146
ED None

This material has been prepared for general informational purposes only and is not
intended to be relied upon as accounting, tax, legal or other professional advice.
Please refer to your advisors for specific advice.

ey.com

Justin Hanke
Senior Manager
Ernst & Young LLP
justin.hanke@ey.com
+ 1 614 547 2580

Justin Sebastian
Senior Manager
Ernst & Young LLP
justin.sebastian@ey.com
+ 1 704 331 0382

